Bayesian planning and inference of a progressively censored sample from linear hazard rate distribution

نویسندگان

  • Ananda Sen
  • Nandini Kannan
  • Debasis Kundu
چکیده

This paper deals with the Bayesian inference of the linear hazard rate (LHR) distribution under a progressively censoring scheme. A unified treatment of both Type I and Type II censoring is presented under independent gamma priors for the parameters, that yields the posteriors as mixtures of gamma. The priors are motivated from a probability matching viewpoint. Along with marginal inference and prediction, a joint credible set is constructed utilizing the posterior distribution of certain quantities of interest. The Bayesian inference demonstrates an intimate connection with the frequentist inference results under a Type-II censoring scheme. Bayesian planning strategies are explored that search for the optimal progressive censoring schemes under a variance criterion as well as a criterion based on the length of a credible interval for percentiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for the Proportional Hazards Family under Progressive Type-II Censoring

In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...

متن کامل

Bayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models

Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...

متن کامل

Bayesin estimation and prediction whit multiply type-II censored sample of sequential order statistics from one-and-two-parameter exponential distribution

In this article introduce the sequential order statistics. Therefore based on multiply Type-II censored sample of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two- parameter exponential distributions under the assumption that the prior distribution is given by an inverse gamma distribution and the Bayes estimator with respect to squared error loss ...

متن کامل

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

Inference for a Skew Normal Distribution Based on Progressively Type-II Censored Samples

In many industrial experiments involving lifetimes of machines or units, experiments have to be terminated early or the number of experiments must be limited due to a variety of circumstances (e.g. when expensive, etc.) the samples that arise from such experiments are called censored data. Cohen (1991) was one of the earliest to study a more general censoring scheme called progressive censor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013